
Published as a conference paper at ICLR 2020

FEDERATED LEARNING WITH MATCHED AVERAGING

Hongyi Wang ∗
Department of Computer Sciences
University of Wisconsin-Madison
hongyiwang@cs.wisc.edu

Mikhail Yurochkin
IBM Research
MIT-IBM Watson AI Lab
mikhail.yurochkin@ibm.com

Yuekai Sun
Department of Statistics
University of Michigan
yuekai@umich.edu

Dimitris Papailiopoulos
Department of Electrical and Computer Engineering
University of Wisconsin-Madison
dimitris@papail.io

Yasaman Khazaeni
IBM Research
yasaman.khazaeni@us.ibm.com

ABSTRACT

Federated learning allows edge devices to collaboratively learn a shared model
while keeping the training data on device, decoupling the ability to do model
training from the need to store the data in the cloud. We propose the Federated
matched averaging (FedMA) algorithm designed for federated learning of mod-
ern neural network architectures e.g. convolutional neural networks (CNNs) and
LSTMs. FedMA constructs the shared global model in a layer-wise manner by
matching and averaging hidden elements (i.e. channels for convolution layers;
hidden states for LSTM; neurons for fully connected layers) with similar feature
extraction signatures. Our experiments indicate that FedMA not only outperforms
popular state-of-the-art federated learning algorithms on deep CNN and LSTM
architectures trained on real world datasets, but also reduces the overall commu-
nication burden.1

1 INTRODUCTION

Edge devices such as mobile phones, sensors in a sensor network, or vehicles have access to a
wealth of data. However, due to data privacy concerns, network bandwidth limitation, and device
availability, it’s impractical to gather all the data from the edge devices at the data center and conduct
centralized training. To address these concerns, federated learning is emerging (McMahan et al.,
2017; Li et al., 2019; Smith et al., 2017; Caldas et al., 2018; Bonawitz et al., 2019; Kairouz et al.,
2019) as a paradigm that allows local clients to collaboratively train a shared global model.

The typical federated learning paradigm involves two stages: (i) clients train models with their
local datasets independently, and (ii) the data center gathers the locally trained models and aggre-
gates them to obtain a shared global model. One of the standard aggregation methods is FedAvg
(McMahan et al., 2017) where parameters of local models are averaged element-wise with weights
proportional to sizes of the client datasets. FedProx (Sahu et al., 2018) adds a proximal term to
the client cost functions, thereby limiting the impact of local updates by keeping them close to
the global model. Agnostic Federated Learning (AFL) (Mohri et al., 2019), as another variant of
FedAvg, optimizes a centralized distribution that is a mixture of the client distributions.

One shortcoming of FedAvg is coordinate-wise averaging of weights may have drastic detrimental
effects on the performance of the averaged model and adds significantly to the communication bur-
den. This issue arises due to the permutation invariance of neural network (NN) parameters, i.e. for

∗Work performed while doing an internship at IBM Research.
1Code is available at https://github.com/IBM/FedMA

1





Published as a conference paper at ICLR 2020

θi denote the ith neuron in the global model, and c(·, ·) be an appropriate similarity function between
a pair of neurons. Solution to the following optimization problem are the required permutations:

min
{πj

li}

L∑
i=1

∑
j,l

min
θi

πjlic(wjl, θi) s.t.
∑
i

πjli = 1 ∀ j, l;
∑
l

πjli = 1 ∀ i, j. (2)

Then ΠT
jli = πjli and given weights {Wj,1,Wj,2}Jj=1 provided by J clients, we compute the fed-

erated neural network weights W1 = 1
J

∑
jWj,1ΠT

j and W2 = 1
J

∑
j ΠjWj,2. We refer to this

approach as matched averaging due to relation of equation 2 to the maximum bipartite matching
problem. We note that if c(·, ·) is squared Euclidean distance, we recover objective function similar
to k-means clustering, however it has additional constraints on the “cluster assignments” πjli neces-
sary to ensure that they form permutation matrices. In a special case where all local neural networks
and the global model are assumed to have same number of hidden neurons, solving equation 2 is
equivalent to finding a Wasserstein barycenter (Agueh & Carlier, 2011) of the empirical distributions
over the weights of local neural networks. Concurrent work of Singh & Jaggi (2019) explores the
Wasserstein barycenter variant of equation 2.

Solving matched averaging Objective function in equation 2 can be optimized using an iterative
procedure: applying the Hungarian matching algorithm (Kuhn, 1955) to find permutation {πj

′

li }l,i
corresponding to dataset j′, holding other permutations {πjli}l,i,j 6=j′ fixed and iterating over the
datasets. Important aspect of Federated Learning that we should consider here is the data hetero-
geneity. Every client will learn a collection of feature extractors, i.e. neural network weights, rep-
resenting their individual data modality. As a consequence, feature extractors learned across clients
may overlap only partially. To account for this we allow the size of the global model L to be an un-
known variable satisfying maxj Lj ≤ L ≤

∑
j Lj where Lj is the number of neurons learned from

dataset j. That is, global model is at least as big as the largest of the local models and at most as big
as the concatenation of all the local models. Next we show that matched averaging with adaptive
global model size remains amendable to iterative Hungarian algorithm with a special cost.

At each iteration, given current estimates of {πjli}l,i,j 6=j′ , we find a corresponding global model
{θi = arg minθi

∑
j 6=j′,l π

j
lic(wjl, θi)}Li=1 (this is typically a closed-form expression or a simple

optimization sub-problem, e.g. a mean if c(·, ·) is Euclidean) and then we will use Hungarian al-
gorithm to match this global model to neurons {wj′l}

Lj′

l=1 of the dataset j′ to obtain a new global
model with L ≤ L′ ≤ L+Lj′ neurons. Due to data heterogeneity, local model j′ may have neurons
not present in the global model built from other local models, therefore we want to avoid “poor”
matches by saying that if the optimal match has cost larger than some threshold value ε, instead of
matching we create a new global neuron from the corresponding local one. We also want a modest
size global model and therefore penalize its size with some increasing function f(L′). This intuition
is formalized in the following extended maximum bipartite matching formulation:

min
{πj′

li }l,i

L+Lj′∑
i=1

Lj′∑
j=1

πj
′

liC
j′

li s.t.
∑
i

πj
′

li = 1 ∀ l;
∑
l

πjli ∈ {0, 1} ∀ i, where

Cj
′

li =

{
c(wj′l, θi), i ≤ L
ε+ f(i), L < i ≤ L+ Lj′ .

(3)

The size of the new global model is then L′ = max{i : πj
′

li = 1, l = 1, . . . , Lj′}. We note some
technical details: after the optimization is done, each corresponding ΠT

j is of size Lj ×L and is not
a permutation matrix in a classical sense when Lj 6= L. Its functionality is however similar: taking
matrix product with a weight matrix W (1)

j ΠT
j implies permuting the weights to align with weights

learned on the other datasets and padding with “dummy” neurons having zero weights (alternatively
we can pad weights W (1)

j first and complete ΠT
j with missing rows to recover a proper permutation

matrix). This “dummy” neurons should also be discounted when taking average. Without loss of
generality, in the subsequent presentation we will ignore these technicalities to simplify the notation.

To complete the matched averaging optimization procedure it remains to specify similarity c(·, ·),
threshold ε and model size penalty f(·). Yurochkin et al. (2019a;b;c) studied fusion, i.e. aggregation,

3



Published as a conference paper at ICLR 2020

of model parameters in a range of applications. The most relevant to our setting is Probabilistic
Federated Neural Matching (PFNM) (Yurochkin et al., 2019b). They arrived at a special case of
equation 3 to compute maximum a posteriori estimate (MAP) of their Bayesian nonparametric model
based on the Beta-Bernoulli process (BBP) (Thibaux & Jordan, 2007), where similarity c(wjl, θi)
is the corresponding posterior probability of jth client neuron l generated from a Gaussian with
mean θi, and ε and f(·) are guided by the Indian Buffet Process prior (Ghahramani & Griffiths,
2005). Instead of making heuristic choices, this formulation provides a model-based specification
of equation 3. We refer to a procedure for solving equation 2 with the setup from Yurochkin et al.
(2019b) as BBP-MAP. We note that their PFNM is only applicable to fully connected architectures
limiting its practicality. Our matched averaging perspective allows to formulate averaging of widely
used architectures such as CNNs and LSTMs as instances of equation 2 and utilize the BBP-MAP
as a solver.

2.2 PERMUTATION INVARIANCE OF KEY ARCHITECTURES

Before moving onto the convolutional and recurrent architectures, we discuss permutation invariance
in deep fully connected networks and corresponding matched averaging approach. We will utilize
this as a building block for handling LSTMs and CNN architectures such as VGG (Simonyan &
Zisserman, 2014) widely used in practice.

Permutation invariance of deep FCs We extend equation 1 to recursively define deep FC net-
work:

xn = σ(xn−1ΠT
n−1WnΠn), (4)

where n = 1, . . . , N is the layer index, Π0 is identity indicating non-ambiguity in the ordering of
input features x = x0 and ΠN is identity for the same in output classes. Conventionally σ(·) is any
non-linearity except for ŷ = xN where it is the identity function (or softmax if we want probabilities
instead of logits). When N = 2, we recover a single hidden layer variant from equation 1. To
perform matched averaging of deep FCs obtained from J clients we need to find permutations for
every layer of every client. Unfortunately, permutations within any consecutive pair of intermediate
layers are coupled leading to a NP-hard combinatorial optimization problem. Instead we consider
recursive (in layers) matched averaging formulation. Suppose we have {Πj,n−1}, then plugging
{ΠT

j,n−1Wj,n} into equation 2 we find {Πj,n} and move onto next layer. The recursion base for this
procedure is {Πj,0}, which we know is an identity permutation for any j.

Permutation invariance of CNNs The key observation in understanding permutation invariance
of CNNs is that instead of neurons, channels define the invariance. To be more concrete, let
Conv(x,W ) define convolutional operation on input x with weights W ∈ RCin×w×h×Cout

, where
Cin, Cout are the numbers of input/output channels and w, h are the width and height of the filters.
Applying any permutation to the output dimension of the weights and then same permutation to the
input channel dimension of the subsequent layer will not change the corresponding CNN’s forward
pass. Analogous to equation 4 we can write:

xn = σ(Conv(xn−1,Π
T
n−1WnΠn)). (5)

Note that this formulation permits pooling operations as those act within channels. To apply matched
averaging for the nth CNN layer we form inputs to equation 2 as {wjl ∈ RD}C

out
n

l=1 , j = 1, . . . , J ,
where D is the flattened Cinn × w × h dimension of ΠT

j,n−1Wj,n. This result can be alternatively
derived taking the IM2COL perspective. Similar to FCs, we can recursively perform matched averag-
ing on deep CNNs. The immediate consequence of our result is the extension of PFNM (Yurochkin
et al., 2019b) to CNNs. Empirically, see Figure 1, we found that this extension performs well on
MNIST with a simpler CNN architecture such as LeNet (LeCun et al., 1998) (4 layers) and signif-
icantly outperforms coordinate-wise weight averaging (1 round FedAvg). However, it breaks down
for more complex architecture, e.g. VGG-9 (Simonyan & Zisserman, 2014) (9 layers), needed to
obtain good quality prediction on a more challenging CIFAR-10.

Permutation invariance of LSTMs Permutation invariance in the recurrent architectures is as-
sociated with the ordering of the hidden states. At a first glance it appears similar to fully con-
nected architecture, however the important difference is associated with the permutation invariance

4



Published as a conference paper at ICLR 2020

of the hidden-to-hidden weights H ∈ RL×L, where L is the number of hidden states. In particu-
lar, permutation of the hidden states affects both rows and columns of H . Consider a basic RNN
ht = σ(ht−1H + xtW ), where W are the input-to-hidden weights. To account for the permutation
invariance of the hidden states, we notice that dimensions of ht should be permuted in the same way
for any t, hence

ht = σ(ht−1ΠTHΠ + xtWΠ). (6)

To match RNNs, the basic sub-problem is to align hidden-to-hidden weights of two clients with
Euclidean similarity, which requires minimizing ‖ΠTHjΠ − Hj′‖22 over permutations Π. This
is a quadratic assignment problem known to be NP-hard (Loiola et al., 2007). Fortunately, the
same permutation appears in an already familiar context of input-to-hidden matching of WΠ. Our
matched averaging RNN solution is to utilize equation 2 plugging-in input-to-hidden weights {Wj}
to find {Πj}. Then federated hidden-to-hidden weights are computed as H = 1

J

∑
j ΠjHhΠT

j

and input-to-hidden weights are computed as before. We note that Gromov-Wasserstein distance
(Gromov, 2007) from the optimal transport literature corresponds to a similar quadratic assignment
problem. It may be possible to incorporate hidden-to-hidden weightsH into the matching algorithm
by exploring connections to approximate algorithms for computing Gromov-Wasserstein barycenter
(Peyré et al., 2016). We leave this possibility for future work.

To finalize matched averaging of LSTMs, we discuss several specifics of the architecture. LSTMs
have multiple cell states, each having its individual hidden-to-hidden and input-to-hidden weights.
In out matched averaging we stack input-to-hidden weights into SD × L weight matrix (S is the
number of cell states; D is input dimension and L is the number of hidden states) when computing
the permutation matrices and then average all weights as described previously. LSTMs also often
have an embedding layer, which we handle like a fully connected layer. Finally, we process deep
LSTMs in the recursive manner similar to deep FCs.

2.3 FEDERATED MATCHED AVERAGING (FEDMA) ALGORITHM

Defining the permutation invariance classes of CNNs and LSTMs allows us to extend PFNM
(Yurochkin et al., 2019b) to these architectures, however our empirical study in Figure 1 demon-
strates that such extension fails on deep architectures necessary to solve more complex tasks. Our
results suggest that recursive handling of layers with matched averaging may entail poor overall
solution. To alleviate this problem and utilize the strength of matched averaging on “shallow” archi-
tectures, we propose the following layer-wise matching scheme. First, data center gathers only the
weights of the first layers from the clients and performs one-layer matching described previously
to obtain the first layer weights of the federated model. Data center then broadcasts these weights
to the clients, which proceed to train all consecutive layers on their datasets, keeping the matched
federated layers frozen. This procedure is then repeated up to the last layer for which we conduct
a weighted averaging based on the class proportions of data points per client. We summarize our
Federated Matched Averaging (FedMA) in Algorithm 1. The FedMA approach requires communi-
cation rounds equal to the number of layers in a network. In Figure 1 we show that with layer-wise
matching FedMA performs well on the deeper VGG-9 CNN as well as LSTMs. In the more chal-
lenging heterogeneous setting, FedMA outperforms FedAvg, FedProx trained with same number of
communication rounds (4 for LeNet and LSTM and 9 for VGG-9) and other baselines, i.e. client
individual CNNs and their ensemble.

FedMA with communication We’ve shown that in the heterogeneous data scenario FedMA out-
performs other federated learning approaches, however it still lags in performance behind the entire
data training. Of course the entire data training is not possible under the federated learning con-
straints, but it serves as performance upper bound we should strive to achieve. To further improve
the performance of our method, we propose FedMA with communication, where local clients receive
the matched global model at the beginning of a new round and reconstruct their local models with
the size equal to the original local models (e.g. size of a VGG-9) based on the matching results of
the previous round. This procedure allows to keep the size of the global model small in contrast
to a naive strategy of utilizing full matched global model as a starting point across clients on every
round.

5



Published as a conference paper at ICLR 2020

Algorithm 1: Federated Matched Averaging (FedMA)

Input : local weights of N -layer architectures {Wj,1, . . . ,Wj,N}Jj=1 from J clients
Output: global weights {W1, . . . ,WN}
n = 1;
while n ≤ N do

if n < N then
{Πj}Jj=1 = BBP-MAP

(
{Wj,n}Jj=1

)
; // call BBP-MAP to solve Eq. 2

Wn = 1
J

∑
jWj,nΠT

j ;
else

Wn =
∑K
k=1

∑
j pjkWjl,n where pk is fraction of data points with label k on worker j;

end
for j ∈ {1, . . . , J} do

Wj,n+1 ← ΠjWj,n+1 ; // permutate the next-layer weights
Train {Wj,n+1, . . . ,Wj,L} with Wn frozen;

end
n = n+ 1;

end

3 EXPERIMENTS

We present an empirical study of FedMA with communication and compare it with state-of-the-art
methods i.e. FedAvg (McMahan et al., 2017) and FedProx (Sahu et al., 2018); analyze the perfor-
mance under the growing number of clients and visualize the matching behavior of FedMA to study
its interpretability. Our experimental studies are conducted over three real world datasets. Summary
information about the datasets and associated models can be found in supplement Table 3.

Experimental Setup We implemented FedMA and the considered baseline methods in PyTorch
(Paszke et al., 2017). We deploy our empirical study under a simulated federated learning environ-
ment where we treat one centralized node in the distributed cluster as the data center and the other
nodes as local clients. All nodes in our experiments are deployed on p3.2xlarge instances on Ama-
zon EC2. We assume the data center samples all the clients to join the training process for every
communication round for simplicity.

For the CIFAR-10 dataset, we use data augmentation (random crops, and flips) and normalize each
individual image (details provided in the Supplement). We note that we ignore all batch normaliza-
tion (Ioffe & Szegedy, 2015) layers in the VGG architecture and leave it for future work.

For CIFAR-10, we considered two data partition strategies to simulate federated learning scenario:
(i) homogeneous partition where each local client has approximately equal proportion of each of
the classes; (ii) heterogeneous partition for which number of data points and class proportions are
unbalanced. We simulated a heterogeneous partition into J clients by sampling pk ∼ DirJ(0.5)
and allocating a pk,j proportion of the training instances of class k to local client j. We use the
original test set in CIFAR-10 as our global test set for comparing performance of all methods. For
the Shakespeare dataset, we treat each speaking role as a client (Caldas et al., 2018) resulting in a
natural heterogeneous partition. We preprocess the Shakespeare dataset by filtering out the clients
with less than 10k datapoints and sampling a random subset of J = 66 clients. We allocate 80% of
the data for training and amalgamate the remaining data into a global test set.

Communication Efficiency and Convergence Rate In this experiment we study performance of
FedMA with communication. Our goal is to compare our method to FedAvg and FedProx in terms
of the total message size exchanged between data center and clients (in Gigabytes) and the number
of communication rounds (recall that completing one FedMA pass requires number of rounds equal
to the number of layers in the local models) needed for the global model to achieve good perfor-
mance on the test data. We also compare to the performance of an ensemble method. We evaluate
all methods under the heterogeneous federated learning scenario on CIFAR-10 with J = 16 clients
with VGG-9 local models and on Shakespeare dataset with J = 66 clients with 1-layer LSTM net-

6








